Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Talanta ; 275: 126127, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38663073

RESUMO

Modified electrosynthetic sample introduction technique is a reliable means of solving the problem of high sensitivity analysis of trace arsenite. This article attempts to achieve selective electroreduction of AsIII through the construction of electrode surfaces with different structures and materials from the perspective of interface reactions. Among the four transition metal modifiers, the iron modified nickel foam electrode with nano-flower structure documented higher efficiency in inducing arsenic reduction and better species selectivity. Systematic electrochemical and spectroscopic tests suggest that strong adsorption effect between Fe and AsIII, appropriate hydrogen evolution potential, and catalytic activity jointly promote efficient electroreduction of AsIII. Optimization based on electrode materials and electrolysis conditions, with high sensitivity, wide linear range (0.1-50 µg L-1), and excellent species selectivity, this paper offers an efficient and economic sample introduction method for trace AsIII/V selective atomic spectroscopy direct determination.

2.
Anal Chim Acta ; 1287: 342130, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38182352

RESUMO

BACKGROUND: The electrochemical hydride generation technology, which uses electrolysis instead of chemical reagents to generate reducing species to achieve gaseous transformation and sample introduction of the tested elements, has received widespread attention in the field of atomic spectroscopy due to its simple, economical, and green characteristics. However, limited by the effective area of the electrode, the introduction efficiency and spectral signal of most elements (e.g., germanium) in practical applications are lower than traditional chemical hydride generation. RESULTS: In this paper, an efficient electrochemical hydride generation (EHG) method based on metal foam electrode for µg L-1 level germanium was constructed. Systematic electrochemical and spectral tests showed that the low charge transfer resistance and the high electrochemical activity of nickel-based foam electrodes jointly promoted the efficient electroreduction of Ge(IV). Besides, the porous network structure of the metal foam material improves the contact probability of reactants while reducing the gas-evolution effect caused by bubble accumulation. Interestingly, adequate reaction sites are crucial for the conversion of germanium, but large foam electrodes are not always compatible with analytical performance. After coupling atomic fluorescence spectroscopy, this new electrolysis method has been proven to be suitable for efficient conversion and quantitative detection of Ge over a wide concentration range (5-150 µg L-1). SIGNIFICANCE: Our proposal to improve the electrosynthesis efficiency of germanane (GeH4) by using metal foam electrode is extremely effective for the detection of trace or ultra-trace germanium. The exploration of electrode material, structure, and especially effective area will also provide ideas for the establishment of highly sensitive analysis methods in the future.

3.
RSC Adv ; 14(4): 2652-2658, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38229718

RESUMO

Cucurbit[n]urils (Q[n]s) are a class of supramolecular host compounds with hydrophilic carbonyl ports and hydrophobic cavities, which can selectively form host-guest inclusion complexes with guest molecules to change the properties of guest molecules. In this paper, tetramethyl cucurbit[6]uril (TMeQ[6]) was used as the host and three 2-heterocyclic substituted benzimidazole derivatives as the guests, and their modes of interaction were investigated using X-ray crystallography, 1H NMR spectrometry, and other analytical techniques. The results showed that TMeQ[6] formed a 1 : 1 host-guest inclusion complex with three guest molecules, and the binding process between them was mainly enthalpy-driven. The X-ray diffraction analysis indicated that the main driving forces for the formation of these three inclusion complexes included hydrogen bonding interactions and ion dipole interactions. There are two modes of interaction between G3 and TMeQ[6] in the liquid phase, indicating that the benzimidazole ring and heterocyclic substituents on the guest molecule compete with the cavity of TMeQ[6]. Besides, the addition of TMeQ[6] significantly enhanced the fluorescence of these guests and slightly improved their solubility.

4.
Circulation ; 149(15): 1205-1230, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38189150

RESUMO

BACKGROUND: The relationship between heart failure (HF) and atrial fibrillation (AF) is clear, with up to half of patients with HF progressing to AF. The pathophysiological basis of AF in the context of HF is presumed to result from atrial remodeling. Upregulation of the transcription factor FOG2 (friend of GATA2; encoded by ZFPM2) is observed in human ventricles during HF and causes HF in mice. METHODS: FOG2 expression was assessed in human atria. The effect of adult-specific FOG2 overexpression in the mouse heart was evaluated by whole animal electrophysiology, in vivo organ electrophysiology, cellular electrophysiology, calcium flux, mouse genetic interactions, gene expression, and genomic function, including a novel approach for defining functional transcription factor interactions based on overlapping effects on enhancer noncoding transcription. RESULTS: FOG2 is significantly upregulated in the human atria during HF. Adult cardiomyocyte-specific FOG2 overexpression in mice caused primary spontaneous AF before the development of HF or atrial remodeling. FOG2 overexpression generated arrhythmia substrate and trigger in cardiomyocytes, including calcium cycling defects. We found that FOG2 repressed atrial gene expression promoted by TBX5. FOG2 bound a subset of GATA4 and TBX5 co-bound genomic locations, defining a shared atrial gene regulatory network. FOG2 repressed TBX5-dependent transcription from a subset of co-bound enhancers, including a conserved enhancer at the Atp2a2 locus. Atrial rhythm abnormalities in mice caused by Tbx5 haploinsufficiency were rescued by Zfpm2 haploinsufficiency. CONCLUSIONS: Transcriptional changes in the atria observed in human HF directly antagonize the atrial rhythm gene regulatory network, providing a genomic link between HF and AF risk independent of atrial remodeling.


Assuntos
Fibrilação Atrial , Remodelamento Atrial , Insuficiência Cardíaca , Humanos , Camundongos , Animais , Fibrilação Atrial/genética , Redes Reguladoras de Genes , Cálcio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Átrios do Coração , Insuficiência Cardíaca/genética , Genômica , Fator de Transcrição GATA4/genética
5.
Beilstein J Org Chem ; 19: 864-872, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346492

RESUMO

In this paper, tetramethyl cucurbit[6]uril (TMeQ[6]) and 1,2-bis(4-pyridyl)ethene (G) were used to construct a supramolecular fluorescent probe G@TMeQ[6]. The host-guest interaction between TMeQ[6] and G was investigated using 1H NMR spectroscopy, single-crystal X-ray diffraction and various experimental techniques. The results show that TMeQ[6] and G form an inclusion complex with a host-guest ratio of 1:1 and the equilibrium association constant (Ka) was 2.494 × 104 M-1. The G@TMeQ[6] fluorescent probe can sensitively recognize Hg2+ ions by fluorescence enhancement. The linear range is 0.33 × 10-5-1.65 × 10-5 mol·L-1, R2 = 0.9926, and the limit of detection is 4.12 × 10-8 mol·L-1. The fluorescent probe can be used to detect the concentration of Hg2+ ions in aqueous solution, and provides a theoretical basis for the development of new fluorescent probes for detecting heavy metal ions.

6.
Anal Chim Acta ; 1245: 340865, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36737138

RESUMO

Due to the agglomeration between particles, the inherent adsorption characteristics of magnetic powder materials are usually difficult to fully display. Taking ionic liquid functional materials as an example, the enrichment behavior of these adsorbents for trace mercury (Hg2+) in ultrasonic (US) assisted dispersion mode was systematically studied. The dissociation of protonic ionic liquids (IL) occur in the process of dispersion and the strong electrostatic attraction can improve the diffusion and adhesion of mercury on the adsorbent surface. Spectral measurement data showed that with the help of US, the more uniform dispersion of magnetic materials accelerated the adsorption of trace Hg2+. Ultrasonic intrinsic parameters such as frequency, power and radiation duration significantly affect the dispersion and apparent adsorption properties of magnetic functional materials. In the range of experimental parameters, the dye/paper image experimental results documents that there is a positive correlation between cavitation effect and ultrasonic frequency/power. The enrichment degree of fixed adsorbate (0.1 µg L-1) under high frequency (59 kHz) or high-power input (100%) is 1-2 times higher than that under low frequency (40 kHz) or low power (60%) input. This is a valuable conclusion for the subsequent study of US dispersion of magnetic and even non-magnetic powder materials. In addition, the in-situ desorption and accurate measurement of adsorbed mercury were realized by combining slurry vapor generation atomic fluorescence spectroscopy (SVG-AFS). The constructed US assisted magnetic solid phase extraction (US-MSPE) method has the characteristics of low detection limit (0.36 ng L-1), high recovery (>90%), sustainable utilization (>3) and reasonable measurement deviation (<5%), which can meet the requirements of ultra-trace Hg2+ (0.01-1.0 µg L-1).

7.
Anal Chim Acta ; 1230: 340378, 2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36192061

RESUMO

All electrolytic vapor generation technologies are based on cathodic reduction, but this paper focuses on how to use anodic oxidation to realize the gaseous transformation of noble metal Os. Supported by RuO2-based dimensionally stable anode (DSA), we found that the conversion from trivalent/tetravalent Os to the OsO4 can be carried out continuously and stably, even at the µg L-1 level. Interestingly, there was a negative correlation between the conversion of OsO4 and the RuO2 content in the DSA. The decrease of oxygen absorption potential and the increase of current density suggest that the oxidation process of Os belongs to electrocatalytic behavior. The catalytic activity of the material has an obvious influence on the conversion of osmium while the formation of free radical may be crucial for the effective oxidation. Under the optimum conditions, this electrocatalytic synthesis of OsO4 combined with ICP-MS can realize the same effect of oxidation and detection of two osmium species [Os(III) and Os(IV)]. The proposed method exhibits a low limit of detection (5 pg kg-1), a wide linear range (0.1-100 µg L-1) and excellent anti-interference performance, which promotes the direct analysis of total Os in real ore samples without separation. Considering the catalytic activity of OsO4 in specific reactions, this green anodic electrosynthesis technology is also expected to provide more possibilities.


Assuntos
Gases , Osmio , Eletrodos , Oxigênio , Água
8.
Dev Cell ; 57(18): 2181-2203.e9, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36108627

RESUMO

Many developmental signaling pathways have been implicated in lineage-specific differentiation; however, mechanisms that explicitly control differentiation timing remain poorly defined in mammals. We report that murine Hedgehog signaling is a heterochronic pathway that determines the timing of progenitor differentiation. Hedgehog activity was necessary to prevent premature differentiation of second heart field (SHF) cardiac progenitors in mouse embryos, and the Hedgehog transcription factor GLI1 was sufficient to delay differentiation of cardiac progenitors in vitro. GLI1 directly activated a de novo progenitor-specific network in vitro, akin to that of SHF progenitors in vivo, which prevented the onset of the cardiac differentiation program. A Hedgehog signaling-dependent active-to-repressive GLI transition functioned as a differentiation timer, restricting the progenitor network to the SHF. GLI1 expression was associated with progenitor status across germ layers, and it delayed the differentiation of neural progenitors in vitro, suggesting a broad role for Hedgehog signaling as a heterochronic pathway.


Assuntos
Redes Reguladoras de Genes , Proteínas Hedgehog , Animais , Diferenciação Celular/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Camundongos , Transdução de Sinais/fisiologia , Proteína GLI1 em Dedos de Zinco/genética
9.
RSC Adv ; 12(29): 18736-18745, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35873309

RESUMO

This paper reports the coordination of cyclopentanocucurbit[5]uril (CyP5Q[5]) and cyclopentanocucurbit[6]uril (CyP6Q[6]) with Fe(ClO4)3, Co(ClO4)2 and Ni(ClO4)2. Single crystal X-ray diffraction analysis shows the metal ions are directly coordinated with the portal of the cucurbit[n]uril to form a one-dimensional supramolecular chain or independent systems in the CyP5Q[5]@Fe(ClO4)3, CyP5Q[5]@Co(ClO4)2, CyP6Q[6]@Co(ClO4)2 and CyP5Q[5]@Ni(ClO4)2 complexes. In CyP6Q[6]@Fe(ClO4)3, the metal ion is not directly coordinated with the cucurbit[n]uril portal, but after forming Fe(H2O)6, it interacts with the cucurbit[n]uril portal via a hydrogen bond. The CyP6Q[6]@Ni(ClO4)2 complex is quite special; in this system, there are both metal ions directly coordinated with the cucurbit[n]uril portal and free on the outer surface of the cucurbit[n]uril.

10.
Nucleic Acids Res ; 50(16): e91, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-35640613

RESUMO

Analyzing single-cell transcriptomes promises to decipher the plasticity, heterogeneity, and rapid switches in developmental cellular state transitions. Such analyses require the identification of gene markers for semi-stable transition states. However, there are nontrivial challenges such as unexplainable stochasticity, variable population sizes, and alternative trajectory constructions. By advancing current tipping-point theory-based models with feature selection, network decomposition, accurate estimation of correlations, and optimization, we developed BioTIP to overcome these challenges. BioTIP identifies a small group of genes, called critical transition signal (CTS), to characterize regulated stochasticity during semi-stable transitions. Although methods rooted in different theories converged at the same transition events in two benchmark datasets, BioTIP is unique in inferring lineage-determining transcription factors governing critical transition. Applying BioTIP to mouse gastrulation data, we identify multiple CTSs from one dataset and validated their significance in another independent dataset. We detect the established regulator Etv2 whose expression change drives the haemato-endothelial bifurcation, and its targets together in CTS across three datasets. After comparing to three current methods using six datasets, we show that BioTIP is accurate, user-friendly, independent of pseudo-temporal trajectory, and captures significantly interconnected and reproducible CTSs. We expect BioTIP to provide great insight into dynamic regulations of lineage-determining factors.


Assuntos
Linhagem da Célula , Análise de Célula Única , Fatores de Transcrição , Transcriptoma , Animais , Gástrula/citologia , Marcadores Genéticos , Camundongos , Fatores de Transcrição/genética
11.
Angew Chem Int Ed Engl ; 61(21): e202116865, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35132759

RESUMO

Chemical modification of electrode materials by heteroatom dopants is crucial for improving storage performance in rechargeable batteries. Electron configurations of different dopants significantly influence the chemical interactions inbetween and the chemical bonding with the host material, yet the underlying mechanism remains unclear. We revealed competitive doping chemistry of Group IIIA elements (boron and aluminum) taking nickel-rich cathode materials as a model. A notable difference between the atomic radii of B and Al accounts for different spatial configurations of the hybridized orbital in bonding with lattice oxygen. Density functional theory calculations reveal, Al is preferentially bonded to oxygen and vice versa, and shows a much lower diffusion barrier than BIII . In the case of Al-preoccupation, the bulk diffusion of BIII is hindered. In this way, a B-rich surface and Al-rich bulk is formed, which helps to synergistically stabilize the structural evolution and surface chemistry of the cathode.

12.
Beilstein J Org Chem ; 17: 2950-2958, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956415

RESUMO

Three different complexes, TMeQ[6]-TBT, Q[7]-TBT, and Q[8]-TBT are constructed by three different cucurbiturils and synthesized by guest melamine-cored Schiff bases (TBT) through outer-surface interaction and host-guest interactions. TBT forms a TMeQ[6]-TBT complex with TMeQ[6] through outer-surface interaction, while Q[7]-TBT and Q[8]-TBT form complexes with Q[7,8] through host-guest interactions. Among them, Q[7]-TBT is selected as a UV detector for the detection of silver ions (Ag+). This work makes full use of the characteristics of each cucurbituril and melamine-cored Schiff base to construct a series of complexes and these are applied to metal detection.

13.
R Soc Open Sci ; 8(12): 211280, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34950492

RESUMO

This paper has selected dicyclohexanocucurbit[6]uril (CyH2Q[6]) as the host and 2-phenylbenzimidazole (G) as the guest to investigate the host-guest interaction mode between CyH2Q[6] and G. Under acidic conditions, the complex was characterized using nuclear magnetic resonance, ultraviolet and fluorescence spectroscopy. The results show that the molecular ratio of CyH2Q[6] to G is 2 : 1. The crystals were cultured with ZnCl2 as a structural inducer under acidic conditions and single crystal X-ray diffraction showed that the molecular ratio of CyH2Q[6] to G is 1 : 3. The G@CyH2Q[6] was used as a fluorescent probe to identify metal cations. The probe exhibits a good selective recognition effect toward Fe3+ ions, which involves a reduced fluorescence intensity with a limit of detection of 1.321 × 10-6 mol l-1.

14.
Elife ; 102021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34643182

RESUMO

The gene regulatory networks that coordinate the development of the cardiac and pulmonary systems are essential for terrestrial life but poorly understood. The T-box transcription factor Tbx5 is critical for both pulmonary specification and heart development, but how these activities are mechanistically integrated remains unclear. Here using Xenopus and mouse embryos, we establish molecular links between Tbx5 and retinoic acid (RA) signaling in the mesoderm and between RA signaling and sonic hedgehog expression in the endoderm to unveil a conserved RA-Hedgehog-Wnt signaling cascade coordinating cardiopulmonary (CP) development. We demonstrate that Tbx5 directly maintains expression of aldh1a2, the RA-synthesizing enzyme, in the foregut lateral plate mesoderm via an evolutionarily conserved intronic enhancer. Tbx5 promotes posterior second heart field identity in a positive feedback loop with RA, antagonizing a Fgf8-Cyp regulatory module to restrict FGF activity to the anterior. We find that Tbx5/Aldh1a2-dependent RA signaling directly activates shh transcription in the adjacent foregut endoderm through a conserved MACS1 enhancer. Hedgehog signaling coordinates with Tbx5 in the mesoderm to activate expression of wnt2/2b, which induces pulmonary fate in the foregut endoderm. These results provide mechanistic insight into the interrelationship between heart and lung development informing CP evolution and birth defects.


Assuntos
Família Aldeído Desidrogenase 1/genética , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Coração/embriologia , Pulmão/embriologia , Retinal Desidrogenase/genética , Proteínas com Domínio T/genética , Proteínas de Xenopus/genética , Xenopus/embriologia , Família Aldeído Desidrogenase 1/metabolismo , Animais , Sequência de Bases , Mesoderma/embriologia , Camundongos , Retinal Desidrogenase/metabolismo , Alinhamento de Sequência , Proteínas com Domínio T/metabolismo , Xenopus/genética , Xenopus/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo
15.
Anal Chim Acta ; 1181: 338906, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34556225

RESUMO

Herein, we investigated the enrichment behavior of inorganic mercury (Hg2+) on magnetic adsorbent with different ultrasound (US) energy field input. The enrichment rate of 0.10 µg L-1 mercury is increased by 4.5 times after US instead of stirring as dispersion mode. The input of higher frequency and power ultrasound can accelerate the enrichment of magnetic ionic liquid adsorbent and reduce the Hg2+ residue, importantly, which has not been reported. The positive correlation between cavitation effect and acoustic frequency and power in imaging experiments documents that US parameters are the key factors affecting the magnetic solid phase extraction. In addition, in-situ desorption and detection of adsorbate and recovery of adsorbent can be realized by slurry vapor generation (SVG) technology. The recovery of Hg2+ in four cycles is more than 90%, which indicates that the structure and properties of the material are not affected by the application of US. Hence, the degradation of adsorption properties caused by agglomeration of magnetic materials can be improved by introducing dispersion methods such as US. At the same time, 95% enrichment efficiency and 0.01-1.0 µg L-1 linear calibration range corresponding to 150 mL sample documents that magnetic ionic liquid adsorbent combined with US and sensitive spectral detector can meet the needs of ng L-1 level Hg2+ analysis in natural water samples.


Assuntos
Líquidos Iônicos , Mercúrio , Cromatografia Líquida de Alta Pressão , Fenômenos Magnéticos , Magnetismo , Extração em Fase Sólida
16.
R Soc Open Sci ; 8(3): 202120, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33959363

RESUMO

Binding behaviours between cyclopentanocucurbit[6]uril (CyP6Q[6]) and three amino acids have been investigated by means of X-ray crystallography, proton nuclear magnetic resonance spectroscopy and isothermal titration calorimetry. The results showed that CyP6Q[6] forms a 1 : 2 inclusion complex with glycine, but 1 : 1 complexes with both leucine and lysine. Whereas the carboxyl group of glycine can enter the interior of the cavity of CyP6Q[6], only the alkyl chains of leucine and lysine can enter this cavity. Interestingly, leucine can adopt two different self-assembly modes upon its interaction with cucurbituril, depending on the external conditions, whereas glycine and lysine do not exhibit such behaviour.

17.
Small ; 17(10): e2007236, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33590714

RESUMO

Low-cost and stable sodium-layered oxides (such as P2- and O3-phases) are suggested as highly promising cathode materials for Na-ion batteries (NIBs). Biphasic hybridization, mainly involving P2/O3 and P2/P3 biphases, is typically used to boost their electrochemical performances. Herein, a P3/O3 intergrown layered oxide (Na2/3 Ni1/3 Mn1/3 Ti1/3 O2 ) as high-rate and long-life cathode for NIBs via tuning the amounts of Ti substitution in Na2/3 Ni1/3 Mn2/3- x Tix O2 (x = 0, 1/6, 1/3, 2/3) is demonstrated. The X-ray diffraction (XRD) Rietveld refinement and aberration-corrected scanning transmission electron microscopy show the co-existence of P3 and O3 phases, and density functional theory calculation corroborates the appearance of the anomalous O3 phase at the Ti substitution amount of 1/3. The P3/O3 biphasic cathode delivers an unexpected rate capability (≈88.7% of the initial capacity at a high rate of 5 C) and cycling stability (≈68.7% capacity retention after 2000 cycles at 1 C), superior to those of the sing phases P3-Na2/3 Ni1/3 Mn2/3 O2 , P3-Na2/3 Ni1/3 Mn1/2 Ti1/6 O2 , and O3-Na2/3 Ni1/3 Ti2/3 O2 . The highly reversible structural evolution of the P3/O3 integrated cathode observed by ex situ XRD, ex situ X-ray absorption spectra, and the rapid Na+ diffusion kinetics, underpin the enhancement. These results show the important role of P3/O3 biphasic hybridization in designing and engineering layered oxide cathodes for NIBs.

18.
J Am Chem Soc ; 142(49): 20752-20762, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33249846

RESUMO

Intensive understanding of the surface mechanism of cathode materials, such as structural evolution and chemical and mechanical stability upon charging/discharging, is crucial to design advanced solid-state lithium batteries (SSLBs) of tomorrow. Here, via in situ atomic force microscopy monitoring, we explore the dynamic evolution process at the surface of LiNi0.5Co0.2Mn0.3O2 cathode particles inside a working SSLB. The dynamic formation process of the cathode interphase layer, with an inorganic-organic hybrid structure, was real-time imaged, as well as the evolution of its mechanical property by in situ scanning of the Derjaguin-Muller-Toporov modulus. Moreover, different components of the cathode interphase layer, such as LiF, Li2CO3, and specific organic species, were identified in detailat different stages of cycling, which can be directly correlated with the impedance buildup of the battery. In addition, the transition metal migration and the formation of new phases can further exacerbate the degradation of the SSLB. A relatively stable cathode interphase is key to improving the performance of SSLBs. Our findings provide deep insights into the dynamic evolution of surface morphology, chemical components and mechanical properties of the cathode interphase layer, which are pivotal for the performance optimization of SSLBs.

19.
Research (Wash D C) ; 2020: 1469301, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33145492

RESUMO

The O3-type layered oxide cathodes for sodium-ion batteries (SIBs) are considered as one of the most promising systems to fully meet the requirement for future practical application. However, fatal issues in several respects such as poor air stability, irreversible complex multiphase evolution, inferior cycling lifespan, and poor industrial feasibility are restricting their commercialization development. Here, a stable Co-free O3-type NaNi0.4Cu0.05Mg0.05Mn0.4Ti0.1O2 cathode material with large-scale production could solve these problems for practical SIBs. Owing to the synergetic contribution of the multielement chemical substitution strategy, this novel cathode not only shows excellent air stability and thermal stability as well as a simple phase-transition process but also delivers outstanding battery performance in half-cell and full-cell systems. Meanwhile, various advanced characterization techniques are utilized to accurately decipher the crystalline formation process, atomic arrangement, structural evolution, and inherent effect mechanisms. Surprisingly, apart from restraining the unfavorable multiphase transformation and enhancing air stability, the accurate multielement chemical substitution engineering also shows a pinning effect to alleviate the lattice strains for the high structural reversibility and enlarges the interlayer spacing reasonably to enhance Na+ diffusion, resulting in excellent comprehensive performance. Overall, this study explores the fundamental scientific understandings of multielement chemical substitution strategy and opens up a new field for increasing the practicality to commercialization.

20.
Mikrochim Acta ; 187(9): 517, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32851503

RESUMO

For the first time a nickel foam electrode (NFE) is applied in the field of electrochemical vapor generation (EVG) to carry out the electrochemical vapor phase conversion of mercury. Systematical electrochemical and morphological research has demonstrated that the specific surface area of the NFE was several times larger than that of the metal/non-metal electrode with the same geometric size. At the same time, the 3D porous channel composed of multi-layer nickel wire ensures the full contact between reactant and interface. The evident enhancement of spectral signals on a Ni electrode (283%), compared with Pt (27%) and graphite (109%), confirmed that the NFE effectively enhances the yield of mercury reduction. The NFE exhibits low limit of detection (0.017 µg L-1) and a wide linear range (0.2-20 µg L-1) with recoveries of actual samples in the range 87.8-117% towards Hg2+. Although the NFE has no advantage in electronic transmission and catalytic performance, its excellent stability, especially anti-interference and other characteristics, is sufficient for the analysis of hazardous mercury in complex matrix including certified reference materials and real samples.


Assuntos
Técnicas Eletroquímicas/métodos , Gases/análise , Mercúrio/análise , Níquel/química , Técnicas Eletroquímicas/instrumentação , Eletrodos , Contaminação de Alimentos/análise , Gases/química , Limite de Detecção , Mercúrio/química , Oryza/química , Oxirredução , Porosidade , Rios/química , Chá/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...